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Relaxation of initial conditions in systems with infinitely many absorbing states
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We have investigated the effect of the initial condition on the spreading exponents of the one-dimensional
pair contact proceséPCP and threshold transfer process. The nonorder field was found to exhibit critical
fluctuations, relaxing to its natural value with the same power law as the order parameter field. We argue that
this slow relaxation, which was not taken into account in earlier studies of these models, is responsible for the
continuously changing survival probability exponent. High-precision numerical simulations show evidence of
a (slight) dependence of the location of the transition point on the initial concentration, in the case of PCP. The
damage spreading point and the spreading exponents coincide with those of the ordinary critical point in both
cases[S1063-651X98)01112-X]

PACS numbegps): 05.50+q, 64.60.Ak, 05.70.Ln, 02.56.r

[. INTRODUCTION field, that gives rise to an effective susceptibility for spread-
ing. We show that the nonordering field relaxes to its steady
Recently the question of whether one can construct initiaktate value by the same power-law time dependence as the
states that affect thentiretemporal evolution of critical non- order-parameter field and that this is characterized by the
equilibrium systems was addressed. This is the case of sysatural, long-time behavior exponent of the density decay of
tems that display a phase transition between an active stage DP process. This is clear evidence of slowly decaying
and a phase with infinitely many absorbing states. Nonunimemory. This power-law boundary conditidin time) is
versality of dynamic properties, associated with the initialsimilar to that of the long-range power-law boundary condi-
configuration dependence of the survival probability of clus-tion (in space of [5] and we can see the emergence of con-
ters started from a single active site, has been repptted.  tinuously changing dynamical critical exponents. The small
Similar changes in the critical spreading behavior havespitt of the critical point as a function of initial conditions,
been observed by Grassberger, Chatel Rousseal4] in & shown by high-precision simulations for the PCP model, is
model where long-time memory effects are explicitly intro-;, agreement with the above arguments.

duced. In the system studied by these authors, the suscepti- Damage spreadinDS) simulations invented in biology

bility to the spreading of an active agent changes after th - : .
first encounter, remaining constant afterwards. Despite th%?] and later in physic9] are useful to show the stability of

. . o . the systems with respect to small perturbations. The spread-
observed nonuniversal dynamical critical behavior, susceptli—n behavior has been shown to be sensitive to the dvnamics
bility in the first encounter does not affect the critical point 9 y

location. Grassberger, Chatend Rousseau argue that theseIeading to the same steady states. _An “obje(;tive” definition
results apply to models with multiple absorbing states wher@’ DS has been propos¢di0] according to which the phase
an effective memory-dependent susceptibility is presentdiagrams of the steady states of nonequilibrium models can
However, different behavior is predicted in the case ofbe d|V|ded. to sectors in which all, none or parts of the physi-
slowly decaying memory effects, in which case both thecally possible dynamical rules generate stable damages. The
value of the critical point and the exponents are expected tghase transitions between the phases can be continuous and
be modified. usually belong to the DP universality cldgd]. However, if

A dependence on the initial configuration has also beethe damage variables possess conservation and the DS ab-
found [5] in the case of long-range spatial correlations, insorbing states exhibit symmetries—which usually happens
which case the dynamical critical exponents change continuahen the DS transition point coincides with the ordinary
ously as a function of initial correlation length. The critical critical point the DS transition can belong to a different uni-
relaxation from an initial homogeneous state in systems witlversality clasg12,13. The DS transition cannot be in the
multiple absorbing states was recently examined from a fielghassive phase of the replicas, but if it occurs in the active
theoretical(Langevin equationsapproacH6]. The evolution phase, the fluctuating replicas at the DS absorption point
equation for the order-parameter density was found to inexclude the non-DP DS behavik3]. We have investigated
clude a memory term that is not present in the simpler casthe DS properties of the PCP and TTP models; the DS tran-
of directed percolatioriDP). sition is shown to coincide with the ordinary critical point,

In the present study we have investigated memory effectand the nonuniversal spreading exponents have been inher-
in two 1d models with multiple absorbing states, the pairited as well.
contact proces$PCP [7,1] and threshold transfer process In Sec. Il, we give a brief introduction to the PCP and
(TTP) [2] models. In both models there is a nonorder-TTP models. Time-dependent and critical relaxation studies
parameter field, dynamically coupled to the order-parameteare described in Sec. lll, whereas Sec. IV is devoted to dam-
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age spreading simulations. Some comments and conclusiof¥P mode] averaged over all trial samples, the survival
are presented in Sec. V. probability P(t) of the clusters and the mean spreading size
R(t) of the surviving clusters. At the critical point and for

Il. PCP AND TTP MODELS asymptotically long times these quantities exhibit power-law

behavior like
Both of these models have a single control parampter
and qualitatively similar phase diagrams, displaying an “ac- N(t)oct?, (1)
tive state” (p<p. in the case of PCRy>p, for TTP) and s
(infinitely many) absorbing phasesptp. in the case of P(t)et™?, @
PCP,p<p, for TTP). .
In the TTP model, each site may be vacant, single, or R(t)oct?s, ()

doubly (active occupied, and this can be described by a | . . .
three-state variabler;=0,1,2. In each time step, a site is Wwhich define the exponents, 4, andz, respectively. The

chosen at random in the infected region. In the absenc luster size exponert characterizing the linear scale is re-
of active sites, the dynamics is indeed trivial:df(t)=0 .ated to the anisotropy exponent of the sys@mu /v, by
(or 1), theno;(t+1)=1(0) with probability p (or 1—p). Z=2/z. The order-parameter density inside the surviving

The system relaxes exponentially to a steady state Wher%USterS can be expressed in terms of these exponents as

a fractionp of sites haves;=1 and the others are vacant. p(t)octtd=dz2 (4

If a',(t)=2, then O'i(t+1):0,O'i,1(t+1):(7'i,l(t)

+t1ois(t+1)=0i1()+1 if o7,4(t) and oi_4(t) are  andis expected to show the same long-time decay as from an
both <2 ando(t+1)=1 if only one of the nearest neigh- arbitrary bulk configuration witp(0)+0, i.e.,

bors of sitei (j=i—1 ori+1) haso;(t)<2, in which case

oj(t+1)=o0j(t)+ 1. As can be easily seen, the number of p(t)yoct =AY 5)
active sites either decreases or remains the same in all pro-

cesses other then (1,2;4)2,0,2); the frequency of these whereg is the steady state order-parameter exponent.
processes depends on the concentration of 1's, which is con- Exponentsy and 6 are found to depend on the initial
trolled by the parametgp. Any configuration consisting of concentration of particlep,(0), and arerelated to static
only 0's or 1's is absorbing in what concerns the active sitesexponents3 and »|| by the hyperscaling relatiof2]

The absorbing states in this model are fluctuating—in the

respective sector of phase space, ergodicity is not broken. 2n+2(6+ Blv)=dz (6)

As we show below, the dynamics of 1's is, however,
strongly affected by the presence of active sites. At the criti-
cal point, the concentration of 1's relaxes to its steady stat
value (equal top.) by a power law. , ,

The PCP is a two-state variable model with multiple ab-Et€r densityp,(t) as well as the relaxation %ft the nonorder
sorbing states, each one of them completely frozen in timefi€ld densityp,(t) towards the natural valugs ™= p; (=) of
contrary to what happens in the TTP. In the PCP, nearesthe models. In case of the PCP we uggd'=0.242(1)[15]
neighbor pairs of particle@imers or active sitésannihilate  while for the TTP modep;?'= p.=0.6894(3)[2]. The den-
each other with probability or create, with probability 1 sities were measured inside the “infected” regions of sur-
—p, a particle at one of the adjacefwacan} sites to the Viving clusters only. To estimate the critical exponents and
dimer. Dimers cannot be generated spontaneously and therthe transition points together, we determined the local slopes
fore play the role of the 2’s in the TTP. There is a naturalof the scaling variables. For example, in the case of the order
configuration to which the system at criticality evolves afterparameter density we computed
all activity has died out; the relationship between the natural
particle density ang, is not a simple one unlike the TTP (b= In[p2(t)/po(t/m)] @
case. As shown below, the relaxation to this natural state is a In(m)
slow process—a power law in time is also found in this case
and slowly decaying memory effects arise as a result of thavith m=8. Whenp=p., one should see a straight line as
coupling between the local density of dimers and the locall/t—0. The off-critical curves should possess curvature:
density of isolated occupied sites. curves corresponding tp>p. should veer upward, curves

with p<p. should veer downward.
Figures 1 and 2 show the local slopes,(t)=p,(t)
Ill. TIME-DEPENDENT SIMULATION RESULTS —an‘ for the PCP in case gp;,(0)=0 and p(0)=0.432

Time-dependent simulatiorj44] have become an effec- respectively. For the order parameter density we obtained the
tive tool to explore dynamical critical exponents of systemssame results within numerical accuracy. As one can read off,
at nonequilibrium phase transition points. The simulationghe particle density exhibits long-time power-law behavior
are started from a single active seed embedded in a sea with DP exponent, but the critical point is slightly lower in
inactive sites and followed up to somgay time such that the case ofp;(0)=0 than in case op;(0)=0.432. This,
the cluster size cannot exceed the system kiZ€he quan- however, agrees with the slow-relaxing susceptibility pic-
tities usually investigated are the mean number of active site&uret, becausg(0)=0 is smaller than the natural value

nat__

N(t) (pairs in the case of the PCP and 2’s in the case of the;" =0.242(1) and increases very slowly in the bulk, there-

Seed growing simulations for the PCP and TTP models
ave been carried out up tg,ax =8000—-16 000 time steps
(MCS) for 2x 10° trial runs. We measured the order param-
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FIG. 1. Local slopes ofAp,(t) in PCP simulations ap,(0) FIG. 3. Local slopes forAp,(t) in TTP simulations forp
=0 for p=0.077, 0.076 95, 0.0769, 0.076 83, 0.076(f®m bot-  =0.6887(top curves, p=0.6897(bottom curvel andp,(0)=0.4,
tom to top curves Scaling can be observed for=0.076 8%5), 0.6894, 0.8. Scaling can be observed for approximatply
with the exponent(t—)~0.16. =0.6894, with the exponent(t—«)~0.161).

fore a smaller annihilation probability is enough to drive thedomly distributed pairs in a system of site=16 000 and
system to the absorbing state. This dependence can also fs#lowed the evolution up tdyax =16 000. In the cases of
the result of the lattice version of the PCP model, where, inp1(0)=0 andp,(0)=0.33 we found that the critical point is
contrast to the field theory where there is always some finit@pproximatelyp.=0.077 08 nearer to thB(t) and theN(t)
density of fields, the isolated 1's are frozen. Both densitiedS results. The scaling exponent was again DP like:
exhibit the same exponents in good agreement \gith, ~0.16.
=0.1596(4) of the ¥ 1d DP class. The survival probability ~ In the case of the TTP model we have performed simula-
exponent measured in our high precision simulation is irtions for p;(0)=0.4, p;(0)=0.6894 andp,(0)=0.8 initial
agreement with the value ¢1] within numerical accuracy. particle densities. In this model, we did not observe any shift
In the critical point estimates we could see a tiny differ- of p;, as Fig. 3 shows, and all the densities scale with the
ence depending on whether we measured the survival proig/v)=0.1596(4) exponent.
ability or the density in the same simulation. Namely, the The similar power-law behaviors @ (t) andAp4(t) can
appears to be nearer to the result$lofl 7] if we estimated it be understood if one considers the coupled Langevin equa-
from the P(t) data (p,=0.077 04 instead gf.=0.076 85 in  tions describing the time evolution of the processes. For ex-
the case ofp,(0)=0 and p,=0.07714 instead ofp,  ample, in the case of the PCP model, they look [i&¢
=0.0770 in the case gf;(0)=0.432]. This small offset can
be understood on the basis of our density measuring method ~ d¢1(X,t)

—_— 2 —_— 2— DY
plus the slow, frozen relaxation in PCP that seems to cause a ot C1Vidot 1= U1y = Wid1dhot
crossover effect. The density has been averaged in the in-
fected regions, where frozen “islands” can appear that do +71(X.1), 8

not evolve at all but keep the non-natural densities for long
times. Therefore we overestimate the size of the region in  d¢a(X,t)

2 A2
which densities really relax. To verify this picture we have gt~ C2VibatTada—Uady=Wadidpt -
performed simulations where we averaged the 1's and 2 over
fixed size. In this case we started the PCP process from ran- + 7a(X,1), 9

where 7,(x,t) and 7,(x,t) are Gaussian uncorrelated noise

-0.15 \ terms proportional to/¢,. One can see that the equations
W are coupled strongly by terms; since the right-hand sides
' . . .
0.16 | 1 of the equations contain the same powers of the scaling
‘ fields, the time derivatives are expected to have the same
3 -0.17 | scaling too.
In Ref.[6] it was argued that
-0.18 ¢ t
o1e | $1()= 1%+ [41(0) — $1*]e ™ fo‘f”ﬂm“ (10

0 0.0005 0.001 0.0015 0.002

l (#72'=r,/w;, is the natural concentration in this formalism
1/t (MCS")

may be taken as an approximate solution of @g.in which
FIG. 2. The same as Fig. 1 in the casepg{0)=0.432 and case thep, ¢, cross term in Eq(9) has the form

p=0.077 15, 0.0771, 0.077 05, 0.077, 0.07&®m bottom to top

t
curves. Scaling can be observed fpe=0.077d5), with the expo-

nenta(t—o)~0.16. ~ W2 ¢1(0) = ¢Tat]e7WlJ’o¢2(X’S)dS' (1D
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pP-P. FIG. 6. Double-logarithmic plot of, vst for the critical TTP in

early times forp,(0)=0.02 andp,(0)=0.4, 0.69, and 0.8top to

FIG. 4. Log-log plot of py(p) —pa(Pc) (©O) and respective  poom curvesThe slopes of the straight lines are 0.08, 0.15, and
fluctuation () vs p— p above the critical point of the TTP model. 4 19 (respectively.

Least-square regression resultggir 0.27(2) andy=0.536). The
averaging was done foIIowilng 45 000 initialization MC steps over The critical behavior of thep, field demands that extra
5000 time steps and 300 trials. care is taken when dealing with truncated versions of Egs.
. ] ] (8) and(9). A numerical integration of Eq9), including the
The power-law time dependence g is obvious, be-  pon-Markovian term(11), was carried out by Lopez and
cause an exponential relaxation ¢§*' would just give in  MuFoz [20] and revealed that the presence of the memory
Eq. (9) a term similar tar, ¢, that can shift the critical point  term is responsible for scaling up to some time with nonuni-
but not the critical indice¢from the DP values versal values of; and 5. However, these authors did not find
The long-range scaling behavior of the nonorder densityhe linear relation between the shift from the DP values (
suggests that the, field possesses critical fluctuations. To — ;. and - 8pp) and $1(0)— ¢3! that our results for
test this, we have performed steady state simulations as welhcp show(Fig. 5 and was also found in previous TTP stud-
We have measured the 0, 1, and 2 densities in the case of thgy [18]. We think one has to take into account the omitted
TTP model just above the critical point. We consideted tgrms in Eq.(10), which we have shown to exhibit a power
=4000 systems and let them evolve from random initial con{aw in time and therefore give a relevant contribution to the
ditions with p slightly above p,=0.6894; approximately renormalization ofi,.
40000 MC |attice updateS were necessary to reaCh the Steady We have a|so investigated the ear'y Stages of the re'ax
state. As one can see in Fig. 4, least-square fits [@4(p)  ation of the order parameter. In Rg6] it was suggested that
—pa(Pe)] vs In(p—p,) resulted in regular DP scaling exponent i the short-time regimew(; ¢,t<1) one might observe the
B=0.27[16]. The other two densitie®’s and 2’3 exhibited  dynamic percolation scaling of Grassbergd}. Early time
the same steady state exponents too. For the fluctuation @taling—currently referred to asitical initial slip—was in-

Ap1=p1(p)—p1(pc) We observed the scaling troduced by Jansen, Schaub, and Schmittfi2i} and re-
cently investigated by van Wijland, Oerding, and Hilhorst
(Ap2y—(Ap1)2c|p—pe| =7 (120 [22] for a reaction-diffusion model with two kinds of par-

ticles, using renormalization-groupRG) analysis. They
found nonuniversal dependeng@m the initial particle distri-
bution) of the slip exponent in the case of unequal diffusion
coefficients.

The system was prepared by “adding” a few Zsni-

with the y=0.53(6) exponent, which agrees with the DP
universality class value agaji9].

0.10
R form densityp,(0)<1] to a random uniform background of
0's and 1's[density p;(0)]. The system evolution was re-
0.05 ¢ 1 corded up tot=1000 MCS and averages were performed
)}// over independent runs (iOtypically). Log-log plots of
= L - |
g 0.00 //,/O ® | N ] @@ Replica 1
~0.05 | / 1 o | N BN ESN J Replica 2
e
010 [ X ] Damage

202 -0 0.0 0.1 02 0.3 _ . . .
Ap,(0) FIG. 7. Sample initial state of the PCP DS simulations. Pairs

(seeds are displaced in the middle of the lattices of replicas with a
FIG. 5. Initial concentration dependence of the expongifior single space shift that generates two damage variables. In the case
the PCP model. Linear regression gives a slope 0.320(7) betweensf the TTP DS simulations the initialization is the same, except that
7— 7pp andp,(0)— pi2. we have 2's instead of pairs.
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0.271 ' ' TABLE |. Damage spreading simulation results in the PCP
model. The numbers in parentheses are numerical errors.
0.261r
p1(0) Pd 7ps Ops z
0.251F 0.0 0.077 04 0.234(3) 0.24(2) 1.23(3)
0.2 0.07708 0.296(1) 0.18(1) 1.24(4)
= 0 0ah 0.242 0.07709 0.314(6) 0.16(9) 1.24(5)
0.432 0.077 14 0.372(5) 0.11(1) 1.26(3)
0.2311
L
D<t>=<2 |s(i)—s~<i)|>, (13
i=1
0211 0 0005 5 0010 o 0015 s 0020 Wheres(i) denote the pairs in the case of PCP and the vari-

able 2's in the case of the TTP model. At the DS critical
point (pg) we expect that the order parameter scales as

FIG. 8. Local slopesgy(t) near the PCP DS transition point, for
p1(0)=0 andp=0.077 08, 0.077 04, 0.077, 0.076®om bottom
to top. The DS critical point is apy=0.077 04 with the corre-
sponding exponent=0.2343).

1/t (McsT)

D(t)oct”. (14
Similarly the survival probability of damage variables be-
haves as
po(t)—see Fig. 6—show a linear regidlasting for 10<t

<100 for p,(0) equal to a few percehwith a slope that is
independent of,(0) but depends op4(0). This may be

evidence for the critical initial slip with a nonuniversal slip and the average mean square distance of damage spreading
exponentd’ equal to that slope. Unlike the DP case, wherefrom the center scales as

0'=n [22], the values we found fo#' differ significantly
from the corresponding values.

P(t)oct™° (19

R2(t)t?. (16)
Averages were performed ovid=10° independent runs for
each value op in the vicinity of p4 [but for R?(t) only over

The damage spreading simulations have been initialize¢he surviving rung Thetyax Was 8000 in these simulations.
by two replicas of states with identical, but random uniformFigures 8, 9, 10, and 11 show the local slopes results of the
distribution of single 1's of given concentrations. Then aHamming distance for the PCP model and different initial
seed(a pair in the case of PCP dm 2 in thecase of TTRis  concentration of 1's. They transition points are found to

added to each replica such that they become nearest neigbbincide with the ordinary critical points of the replicas
bors and the initial difference is &ee Fig. 7. The order

IV. DAMAGE SPREADING SIMULATIONS

parameter characterizing the damage is the Hamming dis 0.323 : . : ; :
tance between replicas,
0.310 T T
0.318F 4
M\(’A W r)#‘ FJWV\-\J /\ m
0.300 WA\ Y N NN | L.
< 0.313f b
< o0.200Ff ]
0.3081 b
0.280 4
0 30 s . s . s
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
1/t (Mcs)
%23 %000 o.oloo5 o.olo1o 0.6015 0.0020 FIG. 10. Same as Fig. 8 fgs,(0)=0.242 andp=0.077 09,
1/t (McS™h) 0.077 07 (from bottom to top. The dotted curve corresponds to

simulations with system generated initial configurations and
=0.07709. The DS critical point is at;=0.077 09 with the cor-

responding exponeny=0.3146). Thedashed line shows the es-
timated value of the DP exponent obtained by simulations.

FIG. 9. Same as Fig. 8 fop,(0)=0.2 and p=0.077 16,
0.077 12, 0.077 08, 0.077 Qhottom to top. The DS critical point
is at py=0.077 08 with the corresponding=0.2961).
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0.390 : : [15] are chaotic, since ifyy happens to be in the active
phase, the perturbations in the SOC model generate differ-
ences that increase faster than a power law.

V. CONCLUSIONS

Two representatives of systems with a continuous phase
transition to infinitely degenerate absorbing stgf@€P and

< 0.370F TTP model$ have been investigated numerically in-#. In
order to clarify the influence of the initial condition on the
dynamic properties, we have performed time-dependent
0. 3601 simulations and analyzed the evolution of both the order pa-

rameter and the nonorder field densities. We gave numerical
evidence that the nonorder field is in a critical state simulta-
neously with the order-parameter field. The isolated particles

0-359 500 0 0005 0 0010 00015 00020 density exhibits a continuous phase transition with DP expo-

nents to a nonabsorbing state, therefore its fluctuations can-
not be neglected when one tries to understand the nonuniver-

FIG. 11. Same as Fig. 8 for;(0)=0.432 andp=0.07718, sal behavior of critical exponents. Due to the dynamic
0.077 16, 0.077 14, 0.077 12, 0.07 {fdom bottom to top. The DS coupling between the two fields, the slédpower-law decay
critical point is atpy=0.077 14 with the corresponding exponent of the background particle density induces a long-time
7=0.3745). memory of the susceptibility to spreading of the order pa-
rameter4].

within numerical accuracy. A small, but monotonic tendency . W% havedfound thaththe esti.maltesmk;‘olg_tlained from the

in the variation ofpy (as in case op) with initial conditions t|r_ne epenaence of the survival proba |.|ty are con§|stent

can be observed in Table I. with th_ose given by DE_} stud|e_s; a small shift as a function of
The DS criticalp and § exponents show the same non- p1(0) IS exhibited, which we interpret as due to t_he slowly

universal behavior as the corresponding ordinary critical exd€c@ying memony4]. The study of the density in seed-

ponents(see also[15,17) and coincide with them within growing simulations produced values pf slightly off the

numerical precision. The exponenis constant within nu- ormer ones; we think this is probably a crossover effect.
merical accuracy. We do not see such g shift for the TTP model so this

In the case op,(0)=0.242, we performed runs with uni- maybe specific of the PCP model, connected to the noner-
form initial distributions and with system generated configu-9°dicity of its absorbing states. In both models the critical
rations of isolated 1's with the same average concentratiorgXPonentsy and & have been found to behave linearly as a
The latter, nonuniform distribution was generated by lettingfUnction of the initial particle concentration. _

a single replica to run ap=0.077 09 until it reached the P reliminary studies of the early time critical regime sug-
absorbing state; then the infected area of the system was usg@St the existence of @hory initial slip regime chara<:|ter-

as initial state for DS simulations, similarly to what was done!2€d by an exponent that depends on the initial particle con-
in Ref.[1]. We do not see significant differencésig. 10 cgn.tratlonpl(O), In agreement with RG pred|ct|ons_f_0r a
between the two cases farlarge, both of them result in similar model[22]. This topic needs, however, additional

exponents in agreement with the best DP cl investigation. o .
28_3137 value[lg]. oo The damage spreading investigations have shown that the

In the case of the TTP model we performed DS simula-_DS. point_ coinpides with t_he critical p_oint and SO thg c_:ritical
tions for p;(0)=0.4 only. We could see analogous DS be.indices “inherit” a nonumv_ersal scaling behavior similar to
havior as in the case of the PCP. Again the critical point and"’hat was found in an earlier §tucﬂ¥3]. '
exponents coincide with the corresponding critical values. We hope t_hat our_s_tudy will st_lmul_ate further ﬂe_ld theo-
Similarly to what has been observed in models that belong t5et|cal _analy5|s of critical spreading in systems with many
the PC universality clasil3], we can also conclude that if absorbing states.
the DS transition point coincides witfy. the scaling behav-
ior is inherited.

An interesting implication of this result can be stated ex- We thank R. Dickman for very stimulating correspon-
ploiting the possible mapping of these models to self-dence. Support from NATO under Grant No. CRG-970332 is
organized critical(SOO models[15]. The corresponding acknowledged. This work was partially financed by Praxis
critical sandpile models are not chaotic in the sense that thgXI (Portuga) under Project No. PRAXIS/2/2.1/Fis/299/94.
avalanchegor cluster$ arising from the dropping of pairs G. Odor gratefully acknowledges support from the Hungar-
(or seedsto the lattice result in trajectories with power-law ian research fund OTKA(Grant Nos. T025286 and
increasing differences only. This does not exclude the possiF023552. The simulations were performed partially on the
bility that other SOC models generated by the way of RefFUJITSU AP-1006- and AP-3000 parallel supercomputers.
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